
J .  Fluid Mech. (1972), vol. 51, part 3, pp .  449-461 

Printed in Great Britain 
449 

Long wave generation on a sloping beach 
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A general solution of the linear long-wave equation is obtained for arbitrary 
ground motion on a uniformly sloping beach. Numerical results are presented 
for specific shapes and time histories of ground motion. Near-shore large ampli- 
tude waves are also investigated using non-linear theory. 

1. Introduction 
The present paper concerns two-dimensional wave generation due to bottom 

motion in shallow water where the undisturbed bottom surface consists of a uni- 
formly sloping beach. The main application is to the study of tsunami waves, 
which are generally due to seismic disturbances. 

Most previous analytical work on this subject has been restricted to constant 
depth situations, e.g. Kajiura (1963), Momoi (1964), but with the advantage of 
inclusion of dispersion, which is neglected here. The shallow-water (non-dis- 
persive) equations have been solved numerically for some general three-dimen- 
sional bottom topographies by Aida (1969) and by Hwang & Divoky (1970). 
An exact solution of the non-linear shallow-water equations for run-up onto a 
sloping beach was given by Carrier & Greenspan (1958), and Carrier (1966) 
matched this solution to a linear dispersing incoming wave generated in a region 
of constant depth. 

The purpose of the present work is to provide analytical solutions and quali- 
tative discussion for the case when bottom motion occurs at a place where the 
bottom is actually sloping, the resulting wave then propagating away into deeper 
water. This is a situation somewhat closer to common seismic tsunami generating 
mechanisms. Dispersion is neglected in the generation region, where typical 
horizontal length scales are supposed to be muoh greater than the local water 
depth. 

In  fact we show that dispersion may still be neglected some distance away from 
the generation region, even though the depth is continually increasing. This is 
because significant wavelengths of the generated wave remain long compared to 
the water depth up to a distance of order b/a2, where b is the scale of the ground 
motion and a the bottom slope. Beyond this distance dispersion is undoubtedly 
significant. 

In  the range b < x < b/a2 we can make use of an asymptotic result for the wave 
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elevation. The amplitude of the generated wave in this ‘intermediate’ far-field 
zone is characterized by a relatively simple relationship with the space and time 
history of the ground motion. 

Using this relationship we investigate the effects of transients in the ground 
motion, establishing il connexion between the time scale of the transient and 
the amplitude of the generated wave. The results for a particular class of trans- 
ients confirm quantitatively that transients with the usual seismic time scales 
(seconds) generate negligible waves compared with those generated by step- 
function-like ground motions. This result is of some practical importance, 
since the detailed time history of an earthquake is quite difficult to estimate, 
whereas the permanent stepwise ground displacement is usually known and can 
be used in general numerical studies such as that of Hwang & Divoky (1970). 

The foregoing conclusions are obtained from a linearized or small amplitude 
theory. Since this linearization may be questionable very close to the shore-line 
we also provide non-linear computations similar to those of Carrier & Greenspan 
(1958). In  fact we establish a direct correspondence between a class of non- 
linear and a class of linear solutions, so that the previous linear results may be 
re-interpreted directly as providing solutions of the non-linear problem with 
modified initial conditions. 

2. Shallow-water equations with bottom motion 
The equations of shallow-water or long-wave theory are well known. However, 

these equations are usually derived on the assumption that the bottom is non- 
moving. The additional contributions due to bottom motion are easy to estab- 
lish, either by physical arguments or by careful re-derivation of the asymptotic 
expansions in the manner of Friedrichs (1948). 

The resulting two-dimensional non-linear shallow-water equations are 

and 
au au ar -+u- = - 9 -  
at ax ax’ 

In  these equations u(x,  t )  is the horizontal velocity component, the bottom is 
given by 

and the free surface by Y = r(x , t ) ,  (2.4) 

in the co-ordinate system indicated by figure 1. The effect of bottom motion is 
through the time dependence of h in (2.1); if h is independent oft, (2.1) reduces 
to the usual shallow-water equation. 

If we suppose that an upward bottom displacement of magnitude r o ( x , t )  
occurs where the undisturbed bottom shape is y = - h,(x), we may write 
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in which case (2.1) becomes 

2+-{u(h0+7)} a = $+%(uq,). a7 a 
at ax 

The advantage of (2.6) is that the forcing terms due to 7, are shown separately. 
Equations (2.2) and (2.6) describe waves of arbitrary amplitude. If we are pre- 

pared to restrict attention to waves of ‘small ’ amplitude, we may linearize these 

. .  . .  
FIGURE 1. Schematic drawing of the ground motion and symbol definitions. 

equations by assuming that 7 and 7, are small compared with h, and that u is 
likewise small compared with the local wave speed (gh,,)&. Neglecting second-order 
terms in (2.2) and (2.6) gives the linearized shallow-water equations 

au a7 
- + g -  = 0 at ax 

a7 a a7 ,+,,(uh,) = -O* at 

Again, these equations are well known, apart from the bottom motion forcing 
term on the right of (2.8). 

3. The solution for arbitrary small ground motion on a uniformly 
sloping beach 

In  the special case of a beach of uniform slope a we have 

h,(x) = ax, (3.1) 

(3.2) 
a7 %+a-  a (xu) = -. a70 

at 
and (2.8) reduces to 

The pair of linear equations (2.7), (3.2) may now be solved for quite arbitrary 
v0(x, t )  by elementary Laplace and Hankel transformations, with the result 

ax 

t j O0 Jo (2@)*) d ~ l ~ ~  J o ( 2 ~ ( 8 * )  d g j  +I1(<, 7) sin [(gal* K@ - 711 d ~ ,  W , t )  = - 2 

( 9 4 4  0 0 

(3.3) 
where J ,  is a Bessel function of the first kind, order zero. 

29-2 
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The function ql(x, t )  whose second time derivative appears in (3.3) is defined 
as 

Tl(”> t )  = To@, t )  + [ T b ,  0-) + td(x, 0-11 H(t ) ,  (3.4) 

where H(t )  is a Heavisjde unit step function. Thus ~ ~ ( x ,  t )  is a ‘modified’ ground 
motion, taking into account effects of the initial elevation q(x, OR) or velocity 
q(x, 0-) of the free surface at the instant before the ground begins to move. 

For example, if there is no ground motion at all, i.e. qo 5 0 for all x and t ,  and 
if the initial velocity is zero, i.e. q(x,  0-) = 0,  then 

Thus the waves following an initial free-surface elevation q(x, 0-) are given by 

On the other hand, a step-function ground motion with an initially undis- 

T O ( “ ’  t )  = To(”, 0,) H ( t )  (3.8) 

and q(x, 0-) = d(x, 0-) = 0 (3.9) 

turbed fluid can lead to a wave identical to that for an initial elevation, i.e. 

imply Y1(”, t )  = To(”, 0,) w, (3.10) 

and (3.7) still holds with qo(x,O+) instead of ~ ( x , 0 - ) .  In  this case, we find 
~ ( x ,  0,) = qo(x,  O+) ,  so that if the ground motion does begin with an upward step, 
that step appears instantaneously as a free-surface elevation, at  t = O+, and is 
added to whatever initial elevation was present at t = OK. Of course in practice 
no ground motion begins quite so suddenly, but it is useful to be able to interpret 
a rapid ground motion of a step-function character as equivalent to an initial 
elevation of the free surface. 

Specializing further, we may consider an initial elevation (or step-function 
ground motion) which decays exponentially away from the shore, writing 

~ ( x ,  0-) = ae-zib, (3.11) 

where a is the elevation at the shoreline x = 0 and b a measure of the horizontal 
extent of the initial disturbance. It is of course inconsistent with the linearization 
to allow a non-zero elevation a at the shoreline, where the depth is zero, and this 
question is considered again in 5 6. 

On substituting (3.11) in (3.7) we obtain 

~ ( x ,  t )  = 2ab K ~ - ~ ~ ’ J ~ ( ~ K ( X ) + )  cos ( (ga)+Kt)  dK. J: (3.12) 

Figure 2 shows values of 7 computed by numerical integration of (3.12) as a 
function of x/b, for various values of non-dimensional time t’ = t (ga/b)+. Similarly 
figure 3 shows 7 as a function oft’ for various (large) values of x/b. In  fact, the 
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FIGURE 2. Successive variation of water surface elevation following an initial 
elevation or step ground motion with exponential I(: dependence. 
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FIGURE 3. Offshore water surface elevation recorded as a function of time 
at  a given location x; same initial conditions as figure 2. 
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shape of the curves in figure 3 is independent of x ,  a phenomenon which is further 
investigated in the following section. Similar computations have been carried out 
for non-exponential x dependence. 

4. The intermediate far-field waves 
We now suppose that some kind of disturbance creates a wave in the neigh- 

bourhood of the shoreline x = 0 and that this disturbance is essentially completed 
after a finite time. The result will be a wave with a beginning and an end, travel- 
ling to x = +a. At a very great distance, since the water depth is continually 
increasing, we certainly expect dispersion effects to become important; however, 
we shall investigate here an 'intermediate' far field in which the shallow-water 
assumption is retained. The limits of validity of this assumption will be obtained 
as part of the analysis. 

The appropriate asymptotic expansion is one which follows the wave, i.e. 
one in which x and t become large together. Upon replacement of the Bessel 
function J ,  ( ~ K ( x ) * )  in (3.3) by its large amplitude asymptotic expansion we ob- 
serve that unless the quantity 

T = t - 2(x/ga)* (4.1) 

remains bounded as t and x tend to infinity, the integral with respect to  K contains 
a highly oscillatory integrand and the wave elevation tends to zero rapidly. On 
the other hand, for bounded T we have as x, t -+ co that 

(4.2) 

The wave described by (4 .2 )  propagates towards x = +a according to the 
equation 

(4-3) It; = 1 at2 49 3 

i.e. it moves with constant acceleration iga. This is because, if we choose arelative 
time scale T as defined in (4.1) such that T = 0 at x = 4 gat2, the shape of the far- 
field wave is independent of x and t, depending only on relative time T .  For 
example, the highest point on the wave remains at the same value of T for all time 
and the whole wave occupies an effectively finite and constant number of units 
of T.  

The height of the wave decreases with time or distance from the source, accord- 
ing to the factor x-4 (which is equivalent to t-l) outside the integral (4.2). Since 
the depth increases as x this corresponds to Green's law for shallow-water waves. 
For example, suppose the modified ground acceleration is given by (3.5) subject 
to (3.11). Then either by substitution in (4.2) or by direct asymptotic approxima- 
tion of (3.12) we obtain 

(4.4) 
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which gives wave shapes precisely as shown in figure 3, where T is determined by 
(4.1). In particular, the elevation at  T = 0 is seen to be 

= 0.246 a(x/b)-i. (4.5) 
The instant t = 2(x/ga)* is only slightly later than the time of maximum positive 
elevation, so that the formula (4.5) gives a reasonable estimate of the size of the 
outgoing wave. 

Finally, let us consider the validity of the neglect of dispersion in this section. 
Certainly we can expect that in practice if we go far enough away from the source 
of disturbance dispersion effects will play an increasingly important role, since 
the depth is becoming larger all the time. However, it appears that there is an 
intermediate zone, far from the source, but not yet far enough for dispersion to be 
significant. 

The size of this intermediate region can be established as follows. Clearly we 
require x $ b, where b is, as in (3.11)) a measure of the extent of the disturbance. 
Dispersion will be significant when important wavelengths are comparable with 
the water depth. However it is clear from (4.2) and figure 3 that the wave is 
spreading out as x or t increases in such a way that it occupies a distance of the 
order of (bx)4 at each fixed (large) value oft. Thus the ratio between (significant) 
wavelength and water depth is of the order of (bx)*/w, which becomes of the 
order of unity when x is of the order of bla2. 

Thus the region of validity of the asymptotic analysis of the present section is 

Note that this applies only to the main part of the wave and that dispersion will 
become significant earlier than x - b/a2for some of the higher frequency compon- 
ents. The intermediate far-field expansion is therefore useful as a ‘figure of merit’ 
indication of tsunami generation, it being left for more detailed &ite depth 
analysis to describe the subsequent propagation and dispersion of the wave. 

b < x < b/a2. (4.6) 

5. Transient ground motion 
One problem in attempting to study generation of tsunamis is that in practice 

the detailed time history of ground motion due to an earthquake is generally 
unknown. Without this information, the best that can be done (see e.g. Hwang 
& Divoky 1970) is to use a step equal to the permanent deformation, or the net 
change in ground level from before the shock to after the shock, a quantity which 
can be measured (Plafker 1969). This assumption appears to be justified on the 
basis that the detailed time history of the shock, occurring as it does over periods 
of seconds, is unimportant as a generator of long period (hours) tsunami waves. 

We may test this assumption quantitatively using the present model theory 
by considering a transient ground motion of the form 

which begins slowly (zero initial displacement and velocity), reaches a maximum 
of 0.54a at t = 2/y  and then decays exponentially to its original level. The time 

rl(x, t)  = qo(x, t)  = ay2t2 e-yte-zib (5.1) 
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scale of the transient is measured by l/y; for instance the whole ground motion is 
essentially completed within a time (say) t = lO/y. The expression (5.1) is quite 
arbitrary and is chosen because the resulting equations are tractable and it does 
represent a transient rise and fall which, for proper choice of y, should not be too 
unlike the real situation. 

On substitution of the expression (5.1) for the modified ground motion yl(x, t )  
into the general formula (3.3) we obtain a complicated expression including 
transient wave effects which decay in time and space at the same rate as the 
transient ground motion, together with outgoing wave terms which decay much 
more slowly and represent the generated tsunami. At distances from the earth- 
quake satisfying the inequality (4.6) these latter terms are adequately described 
by the intermediate far-field asymptotic theory of the previous section. 

I 1 I I I I I I I 

FIGURE 4. The dependence of wave amplitude on the transient parameter 
7’ = y(b/gct)* at xJb = 80. 

Thus from (4.2) we find that the transient ground motion (5.1) leads to a 
tsunami of the form 

2 4  
y(x, t )  = (--) abx-i/om ~ d e - ~ ~ ’  [ A  cos 8 + B sin81 d ~ ,  

where e = ( g a p  K~ + an, (5.3) 
A = - 9C4y2K3(9aK2 - 3y2) ( g a K 2  + y2)-3 (5.4) 
B = (ga)* /?y3( 3 g a K 2  - y2)  (gaK2  + Y’)-~, (5 .5)  and 

T being given by (4.1). Wave elevations at various values of y’ = y(b/ga): are 
shown in figure 4 for the station x/b = 80. 
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One interesting feature of equation (5.2) and figure 4 is that the wave elevation 
vanishes both as y -+ 0 and as y -+ 00. Thus, as y -+ 0, A - y 2 / ~  and B N y 3 / ~ 2 ,  
so that 7 -+ 0 like y2. On the other hand, as y 3 co, A N /c3/y2 and B N ~ ~ / y  so 
that 7 -+ 0 like l ly .  The physical explanation for this effect is that as y --f 0 the 
ground motion is of the nature of a very slow upwelling over a period of (say) days, 
in which case the tsunami generation will be negligible, whereas for y + co we 
obtain the true earthquake situation in which the transient ground motion periods 
may be of the order of seconds and, again, negligible tsunami production occurs 
owing to these fast transients. At intermediate values of y (about y(b/ga)$ = 1) 
the tsunamimagnitudereaches a maximurnvalue, corresponding to peak efficiency 
of generation by this transient ground motion. The corresponding decay time 
(about 10 (b/ga)B) of this 'optimum' transient ground motion is however much 
longer than typical time scales for transient ground motion due to an earthquake, 
which correspond to y(b/ga)f of fifty or more. 

The conclusion to  be drawn from these results is that a ground motion which 
lasts only a brief time and results in little permanent deformation will indeed 
generate a negligible wave. Since the present analysis is linear, this also implies 
that when permanent deformation is present the wave generated can be computed 
from this permanent deformation, ignoring rapid transients. Although this con- 
clusion is intuitively natural, it is desirable to have checks such as the present 
results on its validity. More detailed information about transients can be obtained 
by considering the 'frequency response', i.e. the steady-state amplitude of wave 
generation by a periodic ground motion ; however, the same conclusion should 
be obtained. 

6. Non-linear solution for an initial elevation 

we have from (2.6) and (3.1) that 
If there is no ground motion at all and the bottom is one of constant slope a, 

3+-u(ax+q)  a = 0. 
at ax 

It is remarkable that the pair of thoroughly non-linear equations (2.2), (6.1) can 
in this case be converted to a pair of linear equations by an appropriate change of 
variables. Such a transformation was inferred from results of Stoker (1948) by 
Carrier & Greenspan (1958). 

We use the following new independent variables : 

x* = x + q / a  (6.2) 

and 
with dependent variables 

t" = t - u/ga, 

u*(x*, t") = u(x,  t )  

and q*(x*, t*) = q +u2/2g. (6.5) 

Thus u* is identical to the velocity u but is expressed in terms of the starred co- 
ordinates, whereas 7" differs from the surface elevation 7 by the quantity u2/2g. 
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When equations (6.2)-(6.5) are used in conjunction with (2.2) and (6.1) we 
obtain the linear equations 

and 

- 
au* aq* 
-+g- = 0,  
at* ax* 

a 
at* ax* 
!?.r +a - (x*u*) = 0. 

Thus, not only has this transformation linearized the governing equations, but it 
has converted them into precisely the linear equations (2.7) and (3.2) which 
describe small amplitude waves. The transformation (6.2)-( 6.5) is, with small 
modifications, equivalent to that of Carrier & Greenspan (1958), but the latter 
does not possess the above feature. 

Since (6.6) and (6.7) have already been solved in $ 3  we need merely replace 
unstarred co-ordinates by starred co-ordinates to obtain solutions for q*, and 
hence u*, as functions of x* and t*. Equations (6.2)-(6.5) then determine q and 
u implicitly as functions of x and t .  

For example, (3.12) re-written in starred co-ordinates states 

K ~ - * ~ ’ J ~ ( ~ K ( X * ) * )  cos ( ( g a ) + K t * )  d ~ ,  (6.8) 

from which (6.6) provides the corresponding velocity 

This is the solution with initial conditions such that 

and 

q*(x*, 0-) = ae-”*ib 

u*(x*,O-) = 0. 

(6.10) 

(6.11) 

Since tabulated values of q*(x*, t*) and u*(x*, t * )  are already available from the 
small amplitude results plotted in figure 2 we can use (6.2) and (6.8) to determine 
x = x(x*, t*),  and (6.3) and (6.9) to determine t = t(x*, t*).  Equations (6.4) and 
(6.5) then determine U ( X ,  t )  and q(x,  t). 

It should be noted that (6.10) does not give the actual initial elevation in this 
case. Equations (6.11) and (6.3) do guarantee that t* = 0 corresponds tot  = 0, and 
(6.5) indicates that at this instant q* = 91; however it is not true that x* = x, and 
in fact we have from (6.2) and (6.10) that at t = 0, 

x = X* - ae-x*/b/a.  (6.12) 

On solving (6.10) for x* we find that q = q (x, 0-) is a solution of the transcendental 
equation 

x = - b log (T/u) - q/a. (6.13) 

The initial elevation predicted by (6.13) is shown in figure 5 (as the curve 
labelled t’ = 0) for the cases a = 2ab and a = 5ab. Note that as a --f 0 we retrieve 
the linearized result that x* --f x and q -+ ae2Ib. On the other hand, the initial 
elevation given by (6.13) is physically more satisfactory since its extreme left 
edge is at  x = - a/a, where 7 = a. This point ( - a/a, a )  lies on the beach to the left 
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FIGURE 5.  Non-linear solution. (a )  a/ab = 2.0, ( b )  a/ab = 5.0. 
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of the 'equilibrium' shoreline x = 0, whereas the linearized solution requires a 
piling up of water at x = 0. 

Figure 5 shows the solution for v(x,t) for the cases a = 2ab and a = 5ab. 
These results are plotted non-dimensionally in the form of 7' = 7 / b a  against 
x' = x / b  for variousvalues of t' = t(ga/b)*. Note that in the very substantial initial 
disturbance a = 5ab of figure 5 ( b )  the wave appears to almost break back 
upon itself at  about t' = 3.5. 

Indeed we really have no right to use the present solution for such a severe 
disturbance, since it happens that the transformation between (x*, t * )  and 
(x, t )  fails to be one-to-one at some values of x* and t*,  and no doubt in practice 
actual breaking would occur. Even though there may exist more than one point 
(x, t )  for each (x*, t * )  it is still possible to pick out the set of continuously vary- 
ing wave contours shown in figure 5 ( b ) ;  these are presented as mathematical 
curiosities only. A similar interpretation of ' post-breaking ' calculations is given 
by Stoker (1948). A less severe breaking crisis occurs at a = 2yb, and the results 
in figure 5 (a)  should have practical significance, although this case is very close 
to the borderline for breaking. 

One remarkable feature of these results is that once the breaking crisis is past 
the surface immediately settles down and is flat near x = 0, with a wave spreading 
out to x = + co in a manner similar to that of the linearized solution in figure 2. 
This property may be established analytically by observing from the intermed- 
iate far-field analysis of $ 4  that as x* + co, 7" + 0 like (%*)-a, whereas u* + 0 
like (x*)-g. Thus, ultimately u2/2g < 7" so that 7" --f 7, u / g  a < t* so that t*-+t, 
and q/a < x* so that x* + x. Hence as x --f co the linearized solution 7 = 7*(x, t )  
is retrieved. We may therefore interpret the non-linear results as providing a 
justification for use of the linear theory even when we have reason to suspect its 
near-shore accuracy, providing we determine the actual initial elevation impli- 
citly from the given 'linearized' initial elevation ~* (s * ,  0-). 

Similar non-linear computations may be carried out for other specifications 
of 7*(x* ,  OK); some such results are given by Carrier & Greenspan (1958). The 
question of whether the wave will break can only be answered by computation 
of the Jacobian relating (x*, t * )  and (x, t )  for given q*(x*,  OF). In  the present case, 
with ~ * ( x * ,  0-) given by (6.10), this Jacobian remains positive for a/ab less than 
about 2.0, so that the transformation remains one-to-one and no breaking occurs. 
It does not appear possible to provide an a priori breaking criterion independent 
of the actual specification of 7*(x* ,  0-). 

It would, of course, be of great interest to compute non-linear solutions in the 
presence of actual ground motions yo(%, t ) .  However, the basic transformation 
(6.2)-(6.5) does not appear to work in that case. Hence we must rely on the idea 
expressed in 9 3 that a ground motion of a step nature is equivalent to an initial 
elevation of the free surface. This equivalence is exact in the linearized case and 
may have qualitative significance in the non-linear case. 

This work was performed under the sponsorship of the U.S. Atomic Energy 
Commission. 



Long wave generation on a sloping beach 461 

R E F E R E N C E S  

AIDA, I. 1969 Numerical experiments for tsunamis caused by moving deformations of the 

CARRIER, G. F. 1966 Gravity waves on water of variable depth. J .  Fluid Mech. 24, 641. 
CARRIER, G. F. & GREENSPAN, H. P. 1958 Water waves of finite amplitude on a sloping 

beach. J .  Fluid Mech. 4, 97. 
HWANG, L.3. & DIVOKY, D. 1970 Tsunami generation. J .  Geophys. Res. 75, 6802. 
FRIEDRICHS, K. 0. 1948 On the derivation of the shallow water theory. (Appendix to 

KAJIURA, K. 1963 The leading wave of a tsunami. Bull. Earthquake Res. Inst. 41, 535. 
MOMOI, T. 1964 Tsunami in the vicinity of a wave origin. Bull. Earthquake Res. Inst. 42, 

133. 
PLAFKER, G. 1969 Tectonics of the March 27, 1964 Alaska Earthquake. Geophys. Survey 

Prof. Paper, no. 543-1. '0 
STOKER, J. J. 1948 Formation of breakers and bores. Cornrn. Pure & AppZ. Math. 1, 1. 

sea bottom. Bull. Earthquake Res. Inst. 47, 849. 

STOKER, 1948.) Cornrn. Pure & Appl. Math. 1, 81. 




